激光写光电子学进展

基于同相正交调制光学频域反射仪的分布式多芯 光纤矢量传感

吕明星,李新碗*

上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240

摘要 针对传统光纤传感难以实现应变矢量感知的问题,设计并实验验证了基于同相正交(IQ)调制的光频域反射仪 (OFDR)的多芯光纤应变矢量传感系统。使用 IQ 调制技术,实现了光源线性扫频,利用多芯光纤空间结构关系,在 OFDR系统中获得了七芯光纤弯曲后的应变矢量信息。实验结果表明,当光源扫频范围990 MHz时,在87 m七芯光纤 中,弯曲应变空间分辨率为28.35 cm。当光纤弯曲曲率为1.78 m⁻¹时,角度分辨率为29°。同时进一步通过仿真分析表 明,当扫频范围提高到10 GHz时,理论上可以达到1.02°的角度分辨率,从而进一步提高系统性能。

关键词 光纤传感;光频域反射仪;应变矢量;七芯光纤;同相正交调制 中图分类号 TN29 **文献标志码** A

DOI: 10.3788/LOP223174

Distributed Multi-Core Fiber Vector Sensing Based on In-Phase and Quadrature Modulated Optical Frequency Domain Reflectors

Lü Mingxing, Li Xinwan^{*}

State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract Typically, the realization of strain vector sensing based on traditional optical fiber sensing is difficult. To address this, in this study, a multi-core optical fiber strain vector sensing system based on an in-phase and quadrature (IQ) modulated optical frequency domain reflector (OFDR) is designed and verified. The IQ modulation technique is used to perform a linear frequency sweep of the light source, and the strain vector information of a seven-core fiber after bending is obtained from the OFDR system using the spatial structure relation of multi-core fibers. Experimental results demonstrate that the spatial resolution of the bending strain is 28.35 cm in an 87 m seven-core fiber with a sweep frequency of 990 MHz. When the bending curvature of the optical fiber is 1.78 m^{-1} , the angular resolution is 29° . Moreover, the simulation analysis indicates that when the sweep frequency range increases to 10 GHz, a theoretical angular resolution of 1.02° can be achieved, which can further improve the system performance.

Key words optical fiber sensing; optical frequency domain reflectometer; strain vector; seven-core fiber; in-phase and quadrature modulation

1引言

近年来,分布式光纤传感技术因具有体积小、成本低、抗电磁干扰等诸多优势被广泛用于各个领域和应用场景,实现对温度、应变、压力等诸多参数的测量^[14]。在水下尤其是深海环境中,存在环境复杂、不安全因素较多、不确定性大的问题,实现有缆潜水器的水下定位十分困难^[5]。光纤与潜水器脐带缆有天然的

融合基础,获取光纤的应变矢量信息,再进行三维重构 就可以获得光缆和潜水器在水下三维地理空间的定位 信息。而光纤三维空间重构的关键在于获取光纤分布 式应变矢量,所以对于应变矢量信息的感知是十分重 要和迫切的。

目前对于弯曲曲率大小的测量手段主要有基于光 纤布拉格光栅(FBG)的弯曲曲率传感^[6-7]和基于马赫-增德尔干涉仪(MZI)的弯曲曲率传感^[8-9]。这两种技

收稿日期: 2022-11-28; 修回日期: 2022-12-19; 录用日期: 2023-01-04; 网络首发日期: 2023-02-07 通信作者: ^{*}lixinwan@sjtu.edu.cn

术普遍存在光纤制备复杂、成本大、不利于长距离测量 等问题,且都没有涉及矢量信息的感知。对于应变传 感主要有基于布里渊散射的传感技术^[10]和基于瑞利散 射的光频域反射仪(OFDR)技术^[11]。布里渊散射技术 可以实现长距离(2~150 km)的传感,但是空间分辨率 依赖于泵浦脉冲的宽度,更窄的脉冲对应更弱的布里 渊效应,因此该技术空间分辨率很难低于1m,空间分 辨率不高^[12]、地理位置定位误差大。传统的OFDR系 统可以达到毫米量级的空间分辨率,但是可调谐激光 器大多会引入非线性扫频的问题^[13-15],导致传感距离 受限,只有几十到几百米^[16]。而采用硬件补偿法^[17-18] 或者软件补偿法^[19-20]来补偿相位噪声,都会使用到辅 助干涉仪,这造成了系统冗余和资源浪费。并且,在深 海环境中距离需要扩展至千米乃至万米量级(如马里 亚纳海沟水深10909 m)才能适用于实际工程应用。

应变矢量信息的感知包括应变曲率和应变切向角 两个参量的感知。多芯光纤因其空间排布的对称性具 备矢量传感的优势。多芯光纤是多根纤芯共用一个包 层,当其有应变时,由于纤芯排列具有对称性,不同的 纤芯受到的应变呈现不均匀性,所以各纤芯之间光的 传输状态不同,根据不同纤芯的应变大小差异,结合其 空间特性,可以实现应变矢量的传感^[21]。

本文出于对工程应用和系统性能的综合考量,设 计并实验验证了基于同相正交(IQ)调制的OFDR多 芯光纤应变矢量传感系统。通过IQ调制技术实现了 光源的线性扫频,将线性扫频光用于OFDR系统中, 利用多芯光纤空间结构关系实现了光纤的应变矢量感 知。进一步的仿真分析表明,通过提高线性扫频光源 的扫频范围可以提高系统性能。

2 基本原理

2.1 七芯光纤应变矢量传感理论

七芯光纤是同一包层中具有7根纤芯,其中外层 6根纤芯的空间排列结构具有空间对称性,成正六边 形排列。如图1所示,以1号芯为几何中心,1号芯到 7号芯方向作为*x*轴正方向建立直角坐标系,其中θ_i为

图1 多芯光纤空间示意图

Fig. 1 Spatial diagram of multi-core optical fiber

第 60 卷第 23 期/2023 年 12 月/激光与光电子学进展

外层第*i*根纤芯与七芯光纤中心连线相对于*x*轴正方向的夹角。当该光纤受到ρ方向的应变矢量时,其对应的应变矢量方向为θ_b。

在七芯光纤中,由于应变是线性叠加关系,因此第 i根纤芯的弯曲应变 ϵ_i 与总应变 $\epsilon_{t,i}$ 的关系^[22]为

$$\boldsymbol{\varepsilon}_i = \boldsymbol{\varepsilon}_{\mathrm{t},i} - \boldsymbol{\varepsilon}_{\mathrm{t},1}, \ (i = 2, 3, ..., 7), \tag{1}$$

式中, ε_{4.1} 是七芯光纤的1号中心纤芯的应变大小。 外层6根具有空间对称排列结构的纤芯的局部曲

率矢量和 p_{ap}^[22]为

$$\rho_{\rm app} = \sum_{i=2}^{7} \frac{\varepsilon_i}{d_i} \cos \theta_i \vec{j} + \sum_{i=2}^{7} \frac{\varepsilon_i}{d_i} \sin \theta_i \vec{k}, \qquad (2)$$

式中: d_i 是外层的第i根纤芯到七芯光纤中心的距离, 本文选取的多芯光纤的芯间距为41.5 μ m; θ_i 是外层 第i根纤芯与七芯光纤中心连线相对于x轴正方向的 夹角; \vec{j} 和 \vec{k} 是x轴和y轴的单位矢量。

因此,局部曲率矢量和的大小| P_{app} | 为

$$\left|\rho_{\rm app}\right| = \sqrt{\left(\sum_{i=2}^{7} \frac{\varepsilon_{i}}{d_{i}} \cos \theta_{i}\right)^{2} + \left(\sum_{i=2}^{7} \frac{\varepsilon_{i}}{d_{i}} \sin \theta_{i}\right)^{2}}, \quad (3)$$

应变方向 θ_b为

$$\theta_{\rm b} = \cos^{-1} \frac{\rho_{\rm app,x}}{\left|\rho_{\rm app}\right|} = \sin^{-1} \frac{\rho_{\rm app,y}}{\left|\rho_{\rm app}\right|} = \tan^{-1} \frac{\rho_{\rm app,y}}{\rho_{\rm app,x}} \, . \tag{4}$$

当光纤如图 2 所示弯曲时,弯曲半径为*R*,曲率为 1/*R*,角度分辨率Δα与空间分辨率Δ*x*的关系即为

$$\Delta \alpha = \frac{\Delta x}{R} \times \frac{180}{\pi} \,. \tag{5}$$

图 2 光纤局部曲率示意图 Fig. 2 Diagram of local curvature of optical fiber

2.2 OFDR系统原理

OFDR系统原理如图3所示,可调谐激光通过分光 耦合器1(OC1)分成两束光进入MZI,一束光进入MZI 的参考臂(图3中的reference light)作为参考光,另一束 光进入MZI的探测臂(图3中的probe light),通过环形 器进入待测光纤(FUT)作为探测光。探测光在FUT 中发生后向散射,散射信号的频率、幅度等随着光纤的

图 3 OFDR系统原理图 Fig. 3 Schematic of OFDR system

形变而发生变化。将散射光和参考光在耦合器 2 (OC2)中进行相干拍频。通过光电探测器(PD)后, 在示波器(OSC)中进行信号采集,并通过数据处理算 法解调出光纤的应变信息,实现光纤分布式应变 感知。

图 4 展示了待测光纤某一散射点瑞利散射示意 图,以待测光纤上距离初始位置 *Z_i*的散射点*i*为例,扫 频光源从初始位置到散射点*i*的往返时延为 τ_i = 2*Z_in/c*,扫频光源的扫频速率为γ,拍频后信号的频率 *f_i*与距离 *Z_i*就有如下的关系:

$$\gamma = \frac{\Delta F}{T},\tag{6}$$

$$f_i = \gamma \tau_i = \frac{2Z_i n \gamma}{c}, \qquad (7)$$

式中:ΔF为扫频范围;T为扫频周期;c为真空中的光速。光源的线宽和最大传感距离的关系为

$$Z_{\max} = \frac{c}{2n\Delta v} , \qquad (8)$$

式中: Z_{max} 是最大传感距离; Δv 是光源线宽。

对式(7)进行微分可得:

$$\Delta x = \frac{cT}{2n\Delta F} \Delta f_i \ . \tag{9}$$

对于时间为*T*的信号,频率分辨率为 $\Delta f_i = 1/T$,所以 最终可以推出空间分辨率 Δx 与扫频范围 ΔF 的倒数 成正比:

可调谐激光器通常采用内调制的方式实现线性扫频光,大多存在非线性扫频的问题。而通过IQ调制实

现线性扫频光,相比较于可调谐激光器,具有较高的线性度,所以非线性扫频引起相位的波动较小,可为 OFDR系统提供高信噪比的信号,从而降低降噪需 求,减少系统复杂度和降噪运算量^[13-15]。IQ调制原理 如图5所示,调制器两臂的相位差是 $\pi/2$,通过调节偏 置控制电压,让其处于载波抑制的单边带调制状态。 在工作时,射频信号分为两路,一路直接输入IQ调制 器的I端口(V_1),另一路引入 $\pi/2$ 的相位差后输入IQ 调制器的Q端口(V_q)。两路信号是相互正交、幅度相 同、瞬时频率相等的扫频信号 V_1 和 $V_q^{[15]}$:

$$\begin{cases} V_{\rm I} = V_{\rm D} \cos \left[2\pi \left(f_{\rm m} t + \frac{1}{2} \gamma t^2 \right) \right] \\ V_{\rm Q} = V_{\rm D} \sin \left[2\pi \left(f_{\rm m} t + \frac{1}{2} \gamma t^2 \right) \right], \end{cases}$$
(11)

式中: V_{I} 、 V_{Q} 分别为输入IQ调制器的线性扫频信号; V_{D} 为信号的幅值; f_{m} 为线性扫频信号的初始频率; γ 为 扫频速率。

Fig. 5 IQ modulation system

激 光 器 输 出 窄 线 宽 单 频 连 续 光 $E_{in} = E_0 \exp(j2\pi f_c t)$,经过 IQ 调制之后输出光信号 $E_{out}^{[15]}$ 如下式所示:

$$E_{\text{out}}(t) = E_0 \left[\left(\frac{\pi V_1}{V_{\pi}} \right) \exp\left(j2\pi f_c t \right) + \left(\frac{\pi V_Q}{V_{\pi}} \right) \exp\left(j2\pi f_c t \right) \right] \approx E_0 \exp\left\{ j2\pi \left[\left(f_c + f_m \right) t + \frac{1}{2} \gamma t^2 \right] \right\}, \quad (12)$$

式中, V_{π} 为IQ调制器的半波电压。

将调制后的线性扫频光入射到待测光纤FUT,那 么在Z;散射点的后向瑞利散射信号^[15]为

$$E_{i}(t) = \sqrt{R(\tau_{i})} E_{0} \exp\left\{j2\pi \left[\left(f_{c}+f_{m}\right)(t-\tau_{i})+\frac{1}{2}\gamma(t-\tau_{i})^{2}\right]+\varphi_{i}\right\}, \qquad (13)$$

 $R(\tau_i) = r(\tau_i) \exp(-\alpha \tau_i c/n), \qquad (14)$

式中:r为光纤散射系数, $R(\tau_i)$ 为光纤带衰减的后向散 射系数; α 为光纤衰减系数;c为真空中的光速;n为光 纤折射率; φ_i 为散射点 Z_i 处的相位变化。

整个光纤中各个散射点的瑞利散射信号互相叠加,最终得到整段光纤的瑞利散射信号,然后将该信号和参考光进行相干拍频,通过光电探测器后得到光电流信号*I*(*t*)^[15]为

$$I(t) = \left| E_{\text{out}}(t) + \sum_{i=1}^{N} E_{i}(t) \right|^{2} = \left[E_{\text{out}}(t) + \sum_{i=1}^{N} E_{i}(t) \right] \cdot \left[E_{\text{out}}(t) + \sum_{i=1}^{N} E_{i}(t) \right]^{*} = E_{\text{c}}^{2} \left\{ 1 + \sum_{i=1}^{N} R(\tau_{i}) + 2\sum_{i=1}^{N} \sqrt{R(\tau_{i})} \cos \left\{ 2\pi \left[(f_{\text{c}} + f_{\text{m}})\tau_{i} + \gamma\tau_{i}t - \frac{1}{2}\gamma\tau_{i}^{2} \right] + \varphi_{i} \right\},$$
(15)

式中,N为光纤散射点的个数。

得到瑞利散射信息之后,需要通过数据处理解 调出应变信息。由式(7)可知,信号的频率与距离成 正比,所以将采集到的信号进行傅里叶变换得到频 域信号,也即距离域信号,对其频率分量进行分析, 就可以得到光纤不同位置的散射信息,进而得到应 变信息。

应变解调流程如图 6 所示,首先测量光纤初始状态下的 瑞利 散射信号作为参考信号(图 6 中的 Reference),之后测量光纤状态变化后的瑞利散射信号作为测量信号(图 6 中的 Measurement);接着对两信号进行分别进行傅里叶变换(FFT);选择矩形窗口同时截取相同位置的局部参考信号和局部测量信号;对这两个局部信号进行傅里叶逆变换(iFFT);将iFFT之后的局部参考信号和局部测量信号进行互相关,此时相关峰的偏移与应变大小成正比^[23]。最后,通过对七芯光纤每根纤芯都重复上述操作,即可获得多芯光纤不同纤芯的应变大小信息。根据不同芯之间的空间关系以及式(1)~(4)计算,可以获得多芯光纤的应变 矢量信息。

在算法处理时,选择窗口大小为P的矩形窗截取 信号截取的参考信号记为R(z),截取的测量信号记为 M(z),对这两个信号进行iFFT之后的信号记为r(n) 和m(n)。接着对两组信号进行互相关运算:

$$R(n) = \frac{1}{P} \sum_{i=0}^{P-1} r(i) m(i+n) , \qquad (16)$$

式中,R(n)表示两个信号互相关之后的结果。

图 6 OFDR信号解调流程图^[23] Fig. 6 Flow chart of OFDR signal demodulation^[23]

3 系统设计与实验结果分析

3.1 系统设计

图 7 展示了基于 IQ 调制的 OFDR 分布式光纤应 变矢量传感系统图。射频源(RF)输出线性扫频信号 通过 IQ 调制器调制到窄线宽光源上,生成线性扫频 光。将线性扫频光通过 90:10 的光耦合器 1(OC1)分 为两路,其中 10% 的光信号进入参考光纤,90% 的光 信号通过环形器与扇入扇出模块(FIFO)相连。FIFO 选择多芯光纤(MCF)不同纤芯进行测量,每根纤芯后 向瑞利散射信号通过环形器与进入参考光纤的光信号 在90:10的耦合器2(OC2)中实现拍频,最后被光电探 测器PD接收,并通过OSC进行数据采集,采样率为 2GHz。

实验中射频源扫频从 6.01 GHz 到 7 GHz, 扫频范 围为 990 MHz, 扫频周期为 10 μs 。将该信号调制到线

图 7 基于 IQ 调制的 OFDR 分布式光纤应变矢量传感系统图 Fig. 7 Diagram of OFDR distributed fiber strain vector sensing system based on IQ modulation

宽为10 kHz、中心波长为1550 nm的激光上,最终形成 扫频速率为99 THz/s的线性扫频光,其线性扫频信号 时频图如图 8 所示,图中横轴表示时间,纵轴表示频 率,线性扫频光周期为10 μs,测量得到4个周期的线性 扫频信号,扫频开始频率为6.01 GHz,结束频率为 7 GHz。图9展示了线性扫频光的光谱图,图中横轴表 示激光波长,纵轴表示激光强度,经过调制后负一阶边 带光强为-9.5 dBm,载波光强为-33.3 dBm,载波抑 制比达到23.8 dBm。

图 8 线性扫频信号时频图

Fig. 8 Time-frequency diagram of linear sweep signal

3.2 仿真分析与实验验证

根据第2节理论分析可知,系统的性能主要依赖 于光源的参数。依据式(8),首先仿真分析了光源线宽 与传感距离的关系,结果如图10所示,图中横轴表示 光源线宽,纵轴表示理论传感距离,线宽越窄,理论传 感距离越长。当光源线宽为10kHz时,理论传感 距离达10km。目前海洋最深处为马里亚纳海沟的 10909m,可望满足深海环境下的探测距离。

接着,依据式(5)~(10),仿真分析了光纤弯曲角 度分辨率与光源调谐范围、光纤弯曲曲率之间的关系, 结果如图11所示,图中*x*轴表示光源的扫频范围,从

图 10 光源线宽与传感距离的关系 Fig. 10 Relationship between line width of light source and sensing distance

990 MHz 到 10 GHz, y 轴表示光纤弯曲曲率大小, 从 0.1 m⁻¹到 10 m⁻¹, z 轴表示理论角度分辨率。当扫频 范围为 990 MHz、曲率范围为 0.1~10 m⁻¹时, 其理论 角度分辨率为 0.5785°~57.87°; 当扫频范围为 10 GHz、曲率范围为 0.1~10 m⁻¹时, 其理论角度分辨

率为0.0573°~5.7296°。在曲率大小为1.78 m⁻¹时仿 真分析了角度分辨率和扫频范围之间的关系,结果如 图 12 所示,图中横轴表示光源扫频范围,从990 MHz 到 10 GHz,纵轴表示角度分辨率大小。仿真结果表 明,扫频范围为990 MHz~10 GHz时,角度分辨率为 10.3°~1.02°。提高线性扫频光的扫频范围可进一步 提高系统性能。

基于上述理论仿真分析,在全长87m的七芯光纤 中进行实验验证。当光纤处于自然状态时,测量中间

芯的瑞利散射信号,将该信号进行FFT变换到频域的 结果如图13所示。在19.5m和73.5m处检测到多芯 光纤与FIFO的连接点,在54m处检测到多芯光纤熔 接点,并在87.49m处检测到光纤的菲涅耳反射。除 去这几个较高的反射峰外,87.49m之前的信号为瑞 利散射和噪声的叠加,所以存在较多的幅度波动。文 献[15]的图5中也表明了这一现象,并验证了瑞利散 射信号经过FFT之后在频域呈现随机分布的特点。

通过式(7)计算可得光纤尾端对应的拍频频率的 大小为 f_{max} = 86.73 MHz,OSC采样率为2GHz,采样 时间为175 μ s,采样点数为350k。通过傅里叶变换处 理,信号的频率分辨率 Δf 与采样点数M、采样率 F_s 之 间的关系为

$$\Delta f = \frac{F_s}{M^{\circ}} \tag{17}$$

根据式(17)计算可得信号的频率分辨率 $\Delta f =$ 5714.3 Hz,根据式(9),每两个频率点之间的距离 $\Delta z = 5.67$ mm。

接着,测量多芯光纤每一根纤芯的信号,将七芯光 纤初始状态时的信号作为参考信号;然后将光纤放置 在水平面上,在34.30 m处开始将多芯光纤缠绕并固 定在一个半径为0.56 m、曲率大小为1.78 m⁻¹的圆环 上,在这个状态下测量得到7根纤芯的信号作为测量 信号。

最后,根据图6所示算法,选择大小为P=50的矩形窗口截取信号并进行数据处理。空间分辨率就为 $\Delta x = P\Delta z = 28.35$ cm。光纤圆环周长为 3.52 m,可 以测量得到 12 个散射点,但是光纤缠绕在圆环上时, 在开始和结束的位置存在光纤固定和其他弯曲的影

第 60 卷第 23 期/2023 年 12 月/激光与光电子学进展

响。所以实验中,除去开始和结束各1个散射点,以及 临近结束位置固定光纤的1个散射点,得到了9个有效 的散射点,第一个有效散射点起始位置为34.64 m。 七芯光纤谱偏移的结果如图14所示,图中横轴为光纤 距离,纵轴为七根纤芯瑞利散射谱的偏移。

Fig. 14 Results of seven core correlation peak migration and demodulation

3.3 应变矢量误差分析与讨论

以七芯光纤1号芯也即中间芯作为光纤几何中 心,7号芯作为*x*轴,1号芯到7号芯为*x*轴正方向,如 图1所示建立平面直角坐标系。根据图14结果以及 式(1)~(4)计算得到在35.20m处散射点位置的曲率 大小为1.74m⁻¹,弯曲方向角为-139.11°。图15为该 点弯曲方向角示意图,箭头表示多芯光纤在图1所示 坐标系下的弯曲方向。根据式(5)计算该点的角度分 辨率为29°,与图11仿真结果对比,理论角度分辨率与 实验测得角度分辨率相差18.7°。

同样地,计算光纤圆环上其他散射点的曲率值并 与理论值对比,结果如图16所示,图中横轴表示光纤 长度,纵轴表示不同散射点的曲率值。用均方根误差 (RMSE)来衡量曲率实验值和理论值的误差大小:

$$E_{\text{RMSE}\rho} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\rho_i - \hat{\rho}_i\right)^2}, \qquad (18)$$

式中:N为测量点个数; ρ_i 为实测曲率大小; $\hat{\rho}_i$ 为理论曲率大小。

根据式(18)计算得到曲率理论值与实验值的均方 根误差为 E_{RMSE} =0.1647 m⁻¹,相对误差为9.2%。

4 结 论

本文设计并实验验证了基于 IQ 调制的 OFDR 多 芯光纤应变矢量传感系统。使用 IQ 调制技术,实现了 光源线性扫频,利用多芯光纤空间结构关系,在 OFDR 系统中获得了七芯光纤弯曲后的应变矢量信息。首先 通过仿真分析可知,在曲率大小为 1.78 m⁻¹、扫频范围 为 990 MHz~10 GHz时,角度分辨率为 10.3°~1.02°。 仿真结果表明,提高线性扫频光的扫频范围可进一步 提高系统性能。接着实验验证了当光源扫频范围为 990 MHz、扫频周期 10 µs时,在 87 m 七芯光纤中得到 了 28.35 cm 的弯曲应变空间分辨率。当光纤弯曲曲 率为 1.78 m⁻¹时,实验测得角度分辨率为 29°。通过分 析可得,光纤弯曲理论角度分辨率与实验角度分辨率 误差为 18.7°;曲率大小理论值与实验值的均方根误差 为 0.1647 m⁻¹,相对误差为 9.2%。

致谢 本文的部分修改工作得到了武汉理工大学张俊 华的帮助。

参考文献

- [1] Chen C, Chen L, Bao X Y. Distributed temperature profile in hydrogen flame measured by telecom fiber and its durability under flame by OFDR[J]. Optics Express, 2022, 30(11): 19390-19401.
- [2] Pan M, Hua P D, Ding Z Y, et al. Long distance distributed strain sensing in OFDR by BM3D-SAPCA

第 60 卷第 23 期/2023 年 12 月/激光与光电子学进展

研究论文

image denoising[J]. Journal of Lightwave Technology, 2022, 40(24): 7952-7960.

- [3] Wang H P, Gong X S, Wang X Z, et al. Discrete curvature-based shape configuration of composite pipes for local buckling detection based on fiber Bragg grating sensors[J]. Measurement, 2022, 188: 110603.
- [4] Qu S, Qin Z G, Xu Y P, et al. Improvement of strain measurement range via image processing methods in OFDR system[J]. Journal of Lightwave Technology, 2021, 39(19): 6340-6347.
- [5] 徐文, 鄢社锋, 季飞, 等.海洋信息获取、传输、处理及 融合前沿研究评述[J].中国科学:信息科学, 2016, 46 (8):1053-1085.

Xu W, Yan S F, Ji F, et al. Marine information gathering, transmission, processing, and fusion: current status and future trends[J]. Scientia Sinica: Informationis, 2016, 46(8): 1053-1085.

- [6] Jang M, Kim J S, Um S H, et al. Ultra-high curvature sensors for multi-bend structures using fiber Bragg gratings[J]. Optics Express, 2019, 27(3): 2074-2084.
- [7] Zhang H L, Wu Z F, Shum P P, et al. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing[J]. Journal of Optics, 2016, 18(8): 085705.
- [8] Wang Q, Liu Y. Review of optical fiber bending/ curvature sensor[J]. Measurement, 2018, 130: 161-176.
- [9] Guzman-Sepulveda J R, May-Arrioja D A. In-fiber directional coupler for high-sensitivity curvature measurement [J]. Optics Express, 2013, 21(10): 11853-11861.
- [10] Yang G Y, Fan X Y, Wang B, et al. Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape[J]. Optics Express, 2018, 26(25): 32599-32607.
- [11] Zhao S Y, Cui J W, Suo L J, et al. Performance investigation of OFDR sensing system with a wide strain measurement range[J]. Journal of Lightwave Technology, 2019, 37(15): 3721-3727.
- [12] Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187.
- [13] Yang F, Zhang L J, Zhang Z Y, et al. Nonlinearitycompensation-free optical frequency domain reflectometry based on electrically-controlled optical frequency sweep

[J]. Journal of Electronic Science and Technology, 2021, 19(1): 100025.

- [14] 延敏,白清,梁昌硕,等.基于IQ调制的OFDR系统仿 真研究[J].光学技术,2020,46(6):696-701.
 Yan M, Bai Q, Liang C S, et al. Simulation research of OFDR system based on IQ modulation[J]. Optical Technique, 2020, 46(6): 696-701.
- [15] 梁昌硕,白清,延敏,等.基于光IQ调制的OFDR系统 定位研究[J].光学技术,2021,47(3):315-320,333.
 Liang C S, Bai Q, Yan M, et al. Positioning research on OFDR system with optical IQ modulation[J]. Optical Technique, 2021, 47(3):315-320,333.
- [16] Ding Z Y, Wang C H, Liu K, et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: a review[J]. Sensors, 2018, 18(4): 1072.
- [17] Feng B W, Liu K, Liu T G, et al. Improving OFDR spatial resolution by reducing external clock sampling error[J]. Optics Communications, 2016, 363: 74-79.
- [18] Wang F, Sun Y, Chen Q, et al. Enhancing the effect of nonlinear frequency sweep correction in OFDR with improved reference frequency[J]. Journal of Lightwave Technology, 2022, 40(1): 269-276.
- [19] Fan X J, Liu J F, Luo M M, et al. A method for nonlinearity compensation of OFDR based on polynomial regression algorithm[J]. Optoelectronics Letters, 2020, 16(2): 108-111.
- [20] Zhao S Y, Cui J W, Tan J B. Nonlinearity correction in OFDR system using a zero-crossing detection-based clock and self-reference[J]. Sensors, 2019, 19(17): 3660.
- [21] Zhao Z Y, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 2016, 24(22): 25211-25223.
- [22] 李新碗,肖芬,孙钊.基于光纤带的机器人机械臂及其矢量状态感知装置、方法:CN111360837A[P].2022-08-09.
 Li X W, Xiao F, Sun Z. Optical fiber ribbon-based robot mechanical arm and vector state sensing device and method: CN111360837A[P].2022-08-09.
- [23] Du Y, Liu T G, Ding Z Y, et al. Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1150-1153.